Thermophoretic analysis of ligand-specific conformational states of the inhibitory glycine receptor embedded in copolymer nanodiscs

October 6, 2020

Bernhard, M. & Laube, B.

Scientific Reports 2020, vol: 10 doi: 10.1038/s41598-020-73157-2

Abstract

The glycine receptor (GlyR), a member of the pentameric ligand-gated ion channel family (pLGIC), displays remarkable variations in the affinity and efficacy of the full agonist glycine and the partial agonist taurine depending on the cell system used. Despite detailed insights in the GlyR three-dimensional structure and activation mechanism, little is known about conformational rearrangements induced by these agonists. Here, we characterized the conformational states of the α1 GlyR upon binding of glycine and taurine by microscale thermophoresis expressed in HEK293 cells and Xenopus oocytes after solubilization in amphipathic styrene-maleic acid copolymer nanodiscs. Our results show that glycine and taurine induce different conformational transitions of the GlyR upon ligand binding. In contrast, the variability of agonist affinity is not mediated by an altered conformational change. Thus, our data shed light on specific agonist induced conformational features and mechanisms of pLGIC upon ligand binding determining receptor activation in native environments.

View Publication

Topics: Monolith, MST, Membrane Proteins, Publications

Previous Video
Understanding the nuances of targeted protein degradation
Understanding the nuances of targeted protein degradation

Bifunctional degrader molecules (also known as PROTACs) and molecular glues recruit proteins to E3 ubiquiti...

Up next
Can bioanalytical tools solve your neurodegenerative disease research challenges? 4 questions to ask yourself
Can bioanalytical tools solve your neurodegenerative disease research challenges? 4 questions to ask yourself

Despite extensive efforts, neurodegenerative diseases (ND) continue to feel like a pharmaceutical frontier....

Have a question about Monolith?

Contact Specialist
×

Sign up to receive
the latest NanoTemper news, product updates, event announcements and more

First Name
Last Name
Company Name
Country
State
Province
State
Region
State
Canton
Agree to Subscribe & Privacy Policy*
*I have fully read, understood and agree to the Privacy Policy. I accept the storing and processing of my personal data by NanoTemper as described in the Privacy Policy.

By completing this form, you provide us consent to contact you with educational content, news and information about our products, services and events. You may unsubscribe at any time.
Thank you!
Error - something went wrong!