Fast Mek1 hit identification with TRIC technology correlates well with other biophysical methods

July 8, 2021

Jeridi, S., Rak, A., Gupta, A., et al.

SLAS Discovery 2021, doi: 10.1177/24725552211026267


The variety and complexity of drug targets are expanding rapidly. At the same time, there is significant interest in exploring a larger chemical space to identify new candidates. Fragment-based screening (FBS) has emerged as a popular alternative to traditional high-throughput screening campaigns to identify such drug candidates. FBS identifies hit fragments that exhibit weak interactions with the target of interest, thereby enabling the rational design of small-molecule compounds from the identified hit fragments, which serve as building blocks. This strategy reduces the number of molecules to screen while also allowing the exploration of a greater chemical space.

Here we use temperature-related intensity change (TRIC) technology to perform FBS against the target MAPK/ERK kinase-1 (Mek1). TRIC describes the change in fluorescence intensity of a fluorescently labeled molecule upon a change in temperature. This intensity variation is dependent on the physicochemical environment in the vicinity of the dye and strongly affected by binding events. Thus, the detection of binding events is independent of mass, making TRIC an ideal tool for FBS.

Using only 150 pmol of labeled Mek1, the authors screened 193 fragments from a prescreened library in less than 1 h of measurement time, leading to 66 hits. Among those hits, they identified more than 80% of the published top hits found using orthogonal techniques. Furthermore, TRIC allowed the identification of fragments that were of poor solubility but could be mistaken as false-positive hits in other methods.

View Publication

Topics: Dianthus, TRIC, Publications

Previous Video
Improve your protein degrader design with new ways to discover E3 ligase ligands
Improve your protein degrader design with new ways to discover E3 ligase ligands

Targeted protein degradation using molecular glues or proteolysis-targeting chimeras (PROTACs) is an increa...

Up next
Adventures in drug discovery - The quest for your best small molecule
Adventures in drug discovery - The quest for your best small molecule

Are you working in the field of small molecule drug discovery? Join this webinar to explore the drug disc...

Ready to tackle your challenging affinity screening?

Discover tools you can use

Learn more

Sign up to receive
the latest NanoTemper news, product updates, event announcements and more

First Name
Last Name
Company Name
Agree to Subscribe & Privacy Policy*
*I have fully read, understood and agree to the Privacy Policy. I accept the storing and processing of my personal data by NanoTemper as described in the Privacy Policy.

By completing this form, you provide us consent to contact you with educational content, news and information about our products, services and events. You may unsubscribe at any time.
Thank you!
Error - something went wrong!