Spatial screening of hemagglutinin on Influenza A Virus particles: Sialyl-LacNAc displays on DNA and PEG scaffolds reveal requirements

October 20, 2017

Bandlow V, Liese S, Lauster D, et al.

Journal of the American Chemical Society 2017, vol: 139(45) doi: 10.1021/jacs.7b09967


Attachment of the Influenza A virus onto host cells involves multivalent interactions between virus surface hemagglutinin (HA) and sialoside-containing glyco ligands. Despite the development of extremely powerful multivalent binders of the Influenza virus and other viruses, comparably little is known about the optimal spacing of HA ligands, which ought to bridge binding sites within or across the trimeric HA molecules. To explore the criteria for ligand economical high affinity binding, we systematically probed distance–affinity relationships by means of two differently behaving scaffold types based on (i) flexible polyethylene glycol (PEG) conjugates and (ii) rigid self-assembled DNA·PNA complexes. The bivalent scaffolds presented two sialyl-LacNAc ligands in 23–101 Å distance. A combined analysis of binding by means of microscale thermophoresis measurements and statistical mechanics models exposed the inherent limitations of PEG-based spacers. Given the distance requirements of HA, the flexibility of PEG scaffolds is too high to raise the effective concentration of glyco ligands above a value that allows interactions with the low affinity binding site. By contrast, spatial screening with less flexible, self-assembled peptide nucleic acid (PNA)·DNA complexes uncovered a well-defined and, surprisingly, bimodal distance–affinity relationship for interactions of the Influenza A virus HA with bivalent displays of the natural sialyl-LacNAc ligand. Optimal constructs conferred 103-fold binding enhancements with only two ligands. We discuss the existence of secondary binding sites and shine light on the preference for intramolecular rather than intermolecular recognition of HA trimers on the virus surface.

View Publication

Topics: Gene Therapy, Monolith – MicroScale Thermophoresis, MST,  Publications




Previous Video
Molecular tools to study viral infectious diseases
Molecular tools to study viral infectious diseases

Pandemics have affected human society throughout history, but with the current pandemic happening today, re...

Up next
Protein labeling – improved quantitation of biomolecular interactions by MST using the His-Tag labeling kit RED-tris-NTA 2nd generation
Protein labeling – improved quantitation of biomolecular interactions by MST using the His-Tag labeling kit RED-tris-NTA 2nd generation

Ready to characterize your most challenging interactions?

Discover tools to measure binding affinity

Learn more

Sign up to receive
the latest NanoTemper news, product updates, event announcements and more

First Name
Last Name
Company Name
Agree to Subscribe & Privacy Policy*
*I have fully read, understood and agree to the Privacy Policy. I accept the storing and processing of my personal data by NanoTemper as described in the Privacy Policy.

By completing this form, you provide us consent to contact you with educational content, news and information about our products, services and events. You may unsubscribe at any time.
Thank you!
Error - something went wrong!