Peptide-MHC I complex stability measured by nanoscale differential scanning fluorimetry reveals molecular mechanism of thermal denaturation

August 31, 2021

Saikia, A. and Springer, S.

Molecular Immunology 2021, vol: 136 doi: 10.1016/j.molimm.2021.04.028

Abstract

Recombinant major histocompatibility complex class I molecules are used in diagnostic and therapeutic approaches in cancer immunotherapy, with many studies exploring their binding to antigenic peptides. Current techniques for kinetic peptide binding studies are hampered by high sample consumption, low throughput, interference with protein stability, and/or high background signal. Here, we validate nanoscale differential scanning fluorimetry (nanoDSF), a method using the tryptophan fluorescence of class I molecules, for class I/peptide binding, and we use it to determine the molecular mechanism of the thermal denaturation of HLA-A*02:01.

View Publication

Topics: Prometheus, nanoDSF, Biologics, Publications

Previous Article
Nano differential scanning fluorimetry for comparability studies of therapeutic proteins
Nano differential scanning fluorimetry for comparability studies of therapeutic proteins

Up next
High-throughput feasible screening tool for determining enzyme stabilities against organic solvents directly from crude extracts
High-throughput feasible screening tool for determining enzyme stabilities against organic solvents directly from crude extracts

Want to see more
biologics content?

Explore resources