Understanding the process-induced formation of minorconformational variants of Erwinia chrysanthemi L-asparaginase

December 19, 2016

Gervais, D., Hayzen, J., Orphanou, C., et al.

Enzyme and Microbial Technology 2017, vol: 98 doi: 10.1016/j.enzmictec.2016.12.003


During Erwinia chrysanthemi L-asparaginase (ErA) manufacture, minor conformational variants are formed that elute in the acidic region of the analytical ion-exchange HPLC chromatogram. These variants retain enzymatic activity and form part of the biopharmaceutical product, but must be kept within acceptable limits through controlled operation of the manufacturing process. The high isoelectric point of the ErA native tetramer (8.6) leads to certain process steps being operated in the alkaline pH region. Previously, the formation of these species during processing was not fully understood. In this work, in-process samples were analysed, and alkaline pH (8–9) and hold time were found to be the governing parameters. Formation of ErA acidic species was found to be accelerated at higher pH values and longer hold times, suggesting potential control strategies for the manufacturing process. However, the kinetics of ErA conformational variant formation were found to be slow (0.15–0.25 percent per day at pH 8.5). Changes in the ErA melt temperature (Tm) with pH as determined by both differential scanning calorimetry and differential scanning fluorimetry were found to be predictive of the tendency to form the IEX-HPLC acidic species during processing. Biopharmaceutical process developers should be aware of such changes to proteins and build relevant control strategies into process validation plans.

View Publication

Topics: Prometheus, nanoDSF, Publications

Previous Article
What is Dynamic Light Scattering (and 4 reasons it’s useful for protein research)
What is Dynamic Light Scattering (and 4 reasons it’s useful for protein research)

Any researcher looking to better understand their protein’s behavior can benefit from the information provi...

Up next
Mischievous membrane proteins (and how to tame them)
Mischievous membrane proteins (and how to tame them)

Are you struggling to tame your mischievous membrane proteins? Find out how NanoTemper can help you to char...

Ready to tackle your challenging stability characterizations?

Discover tools

Sign up to receive
the latest NanoTemper news, product updates, event announcements and more

First Name
Last Name
Company Name
Agree to Subscribe & Privacy Policy*
*I have fully read, understood and agree to the Privacy Policy. I accept the storing and processing of my personal data by NanoTemper as described in the Privacy Policy.

By completing this form, you provide us consent to contact you with educational content, news and information about our products, services and events. You may unsubscribe at any time.
Thank you!
Error - something went wrong!