High-throughput stability screening for detergent-solubilized membrane proteins

Vadim Kotov, Kim Bartels, Katharina Veith, Inokentijs Josts, Udaya K. Tiruttani Subhramanyam, Christian Günther, Jörg Labahn, Thomas C. Marlovits, Isabel Moraes, Henning Tidow, Christian Löw & Maria M. Garcia-Alai 

Scientific Reports 2019 vol: 9 Article number: 10379 doi: 10.1038/s41598-019-46686-8


Protein stability in detergent or membrane-like environments is the bottleneck for structural studies on integral membrane proteins (IMP). Irrespective of the method to study the structure of an IMP, detergent solubilization from the membrane is usually the first step in the workflow. Here, we establish a simple, high-throughput screening method to identify optimal detergent conditions for membrane protein stabilization. We apply differential scanning fluorimetry in combination with scattering upon thermal denaturation to study the unfolding of integral membrane proteins. Nine different prokaryotic and eukaryotic membrane proteins were used as test cases to benchmark our detergent screening method. Our results show that it is possible to measure the stability and solubility of IMPs by diluting them from their initial solubilization condition into different detergents. We were able to identify groups of detergents with characteristic stabilization and destabilization effects for selected targets. We further show that fos-choline and PEG family detergents may lead to membrane protein destabilization and unfolding. Finally, we determined thenmodynamic parameters that are important indicators of IMP stability. The described protocol allows the identification of conditions that are suitable for downstream handling of membrane proteins during purification.

View Publication

Topics: Prometheus – nanoDSF, Proteins, Publications

Previous Article
Nano differential scanning fluorimetry for comparability studies of therapeutic proteins
Nano differential scanning fluorimetry for comparability studies of therapeutic proteins

Up next
Structural basis of α-scorpion toxin action on Nav channels
Structural basis of α-scorpion toxin action on Nav channels


Sign up to receive
the latest NanoTemper news, product updates, event announcements and more

First Name
Last Name
Company Name
Agree to Subscribe & Privacy Policy*
*I have fully read, understood and agree to the Privacy Policy. I accept the storing and processing of my personal data by NanoTemper as described in the Privacy Policy.

By completing this form, you provide us consent to contact you with educational content, news and information about our products, services and events. You may unsubscribe at any time.
Thank you!
Error - something went wrong!