Salt stress triggers phosphorylation of the arabidopsis vacuolar K+ channel TPK1 by calcium-dependent protein kinases (CDPKs)

 

Andreas Latz, Norbert Mehlmer, Simone Zapf, Thomas D. Mueller, Bernhard Wurzinger, Barbara Pfister, Edina Csaszar, Rainer Hedrich, Markus Teige, Dirk Becker

Molecular Plant
2013 vol:6 issue: 4 pp: 1274-1289 doi: 10.1093/mp/sss158

Abstract

14-3-3 proteins play an important role in the regulation of many cellular processes. The Arabidopsis vacuolar two-pore K(+) channel 1 (TPK1) interacts with the 14-3-3 protein GRF6 (GF14-λ). Upon phosphorylation of the putative binding motif in the N-terminus of TPK1, GRF6 binds to TPK1 and activates the potassium channel. In order to gain a deeper understanding of this 14-3-3-mediated signal transduction, we set out to identify the respective kinases, which regulate the phosphorylation status of the 14-3-3 binding motif in TPK1. Here, we report that the calcium-dependent protein kinases (CDPKs) can phosphorylate and thereby activate the 14-3-3 binding motif in TPK1. Focusing on the stress-activated kinase CPK3, we visualized direct and specific interaction of TPK1 with the kinase at the tonoplast in vivo. In line with its proposed role in K(+) homeostasis, TPK1 phosphorylation was found to be induced by salt stress in planta, and both cpk3 and tpk1 mutants displayed salt-sensitive phenotypes. Molecular modeling of the TPK1-CPK3 interaction domain provided mechanistic insights into TPK1 stress-regulated phosphorylation responses and pinpointed two arginine residues in the N-terminal 14-3-3 binding motif in TPK1 critical for kinase interaction. Taken together, our studies provide evidence for an essential role of the vacuolar potassium channel TPK1 in salt-stress adaptation as a target of calcium-regulated stress signaling pathways involving Ca(2+), Ca(2+)-dependent kinases, and 14-3-3 proteins.

View Publication

Topics: Potassium channel, Vacuole, Calcium, Calcium-dependent kinase, 14–3–3 protein, Salt stress, Monolith – MicroScale Thermophoresis, MST, Proteins, Publications

 

 

Previous Article
The asymmetric binding of PGC-1α to the ERRα and ERRγ nuclear receptor homodimers involves a similar recognition mechanism
The asymmetric binding of PGC-1α to the ERRα and ERRγ nuclear receptor homodimers involves a similar recognition mechanism

Up next
A ternary AppA-PpsR-DNA complex mediates light regulation of photosynthesis-related gene expression
A ternary AppA-PpsR-DNA complex mediates light regulation of photosynthesis-related gene expression

Ready to characterize your most challenging interactions?

Discover tools to measure binding affinity

Learn more