Application Notes

Determination of low-picomolar affinities of sgRNAs and crRNA/tracrRNAs for Cas9

Issue link: https://resources.nanotempertech.com/i/1050593

Contents of this Issue

Navigation

Page 0 of 7

APPLICATION NOTE High-Affinity Protein-RNA Interactions Determination of low-picomolar affinities of sgRNAs and crRNA/tracrRNAs for Cas9 Tatjana Theer#, Jochen Deckert#, Philipp Hadwiger#, Ingo Röhl#, Dennis Breitsprecher*, Nuska Tschammer* *NanoTemper Technologies GmbH, Floessergasse 4, 81369 Munich #Axolabs GmbH, Fritz-Hornschuch-Straße 9, 95326 Kulmbach Abstract Recent advances in genome engineering technologies based on the RNA-guided CRISPR endonuclease Cas9 are enabling systematic manipulation of genome function in a variety of organisms, ranging from bacteria and archaea to humans. Cas9 is guided to specific locations within a genome by a short RNA search string. Since genome editing leads to permanent modifications within a genome, the targeting specificity of Cas9 nucleases is of particular importance, especially for clinical application and gene editing. In this work, we demonstrate the versatility of MicroScale Thermophoresis (MST) to determine the binding affinities of various single-guide RNA (sgRNA), duplex of CRISPR RNA (crRNA) and trans-activating crRNA (tracrRNA) constructs with Cas9. The MST assay is superior to classical methods like electrophoretic mobility shi assay (EMSA) because it allows effortless Kd determination free in solution. Additionally, MST provides excellent sensitivity while consuming a small amount of non-hazardous fluorescent-labeled oligos or protein. We analyzed several modified RNAs, some of which were labeled with the fluorophore Cy5. Using NanoTemper Technologies Monolith NT.115Pico instrument, we determined the affinities of Cas9 with RNAs differing in length and chemical modification pattern. All interactions were in the lower picomolar range, the highest measured affinity was 1.0 pM.

Articles in this issue

view archives of Application Notes - Determination of low-picomolar affinities of sgRNAs and crRNA/tracrRNAs for Cas9